
Multipath TCP:

Matthieu Baerts (NGI0) • Netdev 0x19 • 09.03.2025

Present, future, and its development workflow (CI)

Plan

● What is MPTCP?

● How to use MPTCP on Linux?

● Current status & next steps

● Development workflow (CI)

2

What is MPTCP?

3

Multipath TCP (MPTCP – RFC-8684)

Exchange data for a single connection over different paths, simultaneously

 ⇒ Bring new capabilities

4
Smartphone and WiFi icons by Blurred203 and Antü Plasma under CC-by-sa, others from Tango project, public domain

Multipath TCP (MPTCP – RFC-8684)

Exchange data for a single connection over different paths, simultaneously

 ⇒ Best network selection

5
Smartphone and WiFi icons by Blurred203 and Antü Plasma under CC-by-sa, others from Tango project, public domain

Multipath TCP (MPTCP – RFC-8684)

Exchange data for a single connection over different paths, simultaneously

 ⇒ Seamless handover

6
Smartphone and WiFi icons by Blurred203 and Antü Plasma under CC-by-sa, others from Tango project, public domain

Multipath TCP (MPTCP – RFC-8684)

Exchange data for a single connection over different paths, simultaneously

 ⇒ Seamless handover

7
Smartphone and WiFi icons by Blurred203 and Antü Plasma under CC-by-sa, others from Tango project, public domain

Multipath TCP (MPTCP – RFC-8684)

Exchange data for a single connection over different paths, simultaneously

 ⇒ Seamless handover

8
Smartphone and WiFi icons by Blurred203 and Antü Plasma under CC-by-sa, others from Tango project, public domain

Multipath TCP (MPTCP – RFC-8684)

Exchange data for a single connection over different paths, simultaneously

 ⇒ Seamless handover

9
Smartphone and WiFi icons by Blurred203 and Antü Plasma under CC-by-sa, others from Tango project, public domain

Multipath TCP (MPTCP – RFC-8684)

Exchange data for a single connection over different paths, simultaneously

 ⇒ Seamless handover

10
Smartphone and WiFi icons by Blurred203 and Antü Plasma under CC-by-sa, others from Tango project, public domain

Multipath TCP (MPTCP – RFC-8684)

Exchange data for a single connection over different paths, simultaneously

 ⇒ Network aggregation

11
Smartphone and WiFi icons by Blurred203 and Antü Plasma under CC-by-sa, others from Tango project, public domain

Multipath TCP (MPTCP – RFC-8684)

Use cases:

● Mobile devices:

○ “walk-out” scenario

● Home Gateways:

○ combine networks, e.g. DSL + cellular or low Earth orbit satellites

● Data centres:

○ fast recoveries, select best paths, aggregation

12

Concept: Subflow and Fallback

● Subflow: Each path of an MPTCP connection. A subflow is a regular

TCP connection carrying extra options in the TCP header.

● Fallback: If the other host does not support MPTCP, or in case of a

middlebox intercepting TCP connections, there will be fallbacks to

TCP. The MPTCP protocol is complex to cope with various

middleboxes.

13

Concept: Path Manager

Which path to create / remove?

14
Smartphone and WiFi icons by Blurred203 and Antü Plasma under CC-by-sa, others from Tango project, public domain

Which addresses to announce?

?

?

Typically, different needs for the clients and servers:

Concept: Packet Scheduler

On which available path packets will be sent? Reinject to another path?

15
Smartphone and WiFi icons by Blurred203 and Antü Plasma under CC-by-sa, others from Tango project, public domain

??

??

How to use MPTCP on Linux?

16

MPTCP on Linux

17

● The complexity is handled by the kernel

● Opt-in (with possibilities to force apps to use MPTCP):

socket(AF_INET(6), SOCK_STREAM, IPPROTO_MPTCP);

● Minimal behaviour changes for apps compared to TCP

● Path-Manager configured via userspace, e.g. manually:

ip mptcp endpoint add <IP address> dev <interface> <type>

MPTCP on Linux

● Some tools can automatically set up the MPTCP endpoints, e.g.

NetworkManager and mptcpd

● Some apps natively support MPTCP, e.g. cURL, HAProxy, Apache Server,

Lighttpd, systemd sockets, Go apps (enabled by default on the server side), etc.

Check mptcp.dev/apps.html

● Possibilities to force using MPTCP, e.g. mptcpize (LD_PRELOAD),

GODEBUG=multipathtcp=1, eBPF, SystemTAP, etc. Check mptcp.dev/setup.html

18

https://www.mptcp.dev/apps.html
https://www.mptcp.dev/setup.html

● Most Linux distributions have MPTCP support enabled, and mptcpd

packages, including specialised ones like OpenWrt, RPiOS, HAOS.

● Debugging tools supports MPTCP, e.g ss -M, ip mptcp, nstat, tcpdump,

ptcpdump, WireShark

● Server: an MPTCP listen socket will create a TCP socket if the client

didn’t request MPTCP: good to have MPTCP enabled by default!

MPTCP on Linux

19

Demo

20

Current status & next steps

21

Current status: general

22

● Minimal differences in TCP code thanks to TCP ULP (+ SKB ext)

● Supports most of the protocol features: multiple subflows, announce

addresses and priority, fast close, reset reasons, etc.

● Info from MIB counters (nstat), INET_DIAG interface (ss) and

MPTCP_INFO / MPTCP_FULL_INFO socket options

Current & Future: socket options

● Current: Supports most common socket options: SO, IP, IPV6, TCP:

○ Imitating TCP’s behaviour

○ But adapted to MPTCP case:

■ Inherit the behaviour on all subflows, including future ones? e.g. KeepAlive

■ Or only on the first one? e.g. TCP FastOpen

○ Still possible to change the per-subflow behaviour with eBPF

● Future: Support more uncommon ones, and simplify the maintenance

23

Current status: path managers

24

● In-kernel: Global settings per network namespace: e.g. via ip mptcp

○ Set endpoints: IP addresses, flags (client-server sides, backup, fullmesh)

○ Set limits: max subflows to establish or accept

○ Monitor connections: created, established, closed, announced, etc.

● Userspace: Per connection: e.g. via mptcpd

○ Reacting to “events” by sending “commands”

⇒ Communications: using Netlink

Current status: PM: Deployment behind a Load-Balancer

● Initial path: with a random server behind a stateless load-balancer

25
Smartphone and WiFi icons by Blurred203 and Antü Plasma under CC-by-sa, others from Tango project, public domain

Anycast: each
server is

reusing the
same public IP

Load-Balancer

Current status: PM: Deployment behind a Load-Balancer

● Additional paths: how a stateless load-balancer can pick the same server?

26
Smartphone and WiFi icons by Blurred203 and Antü Plasma under CC-by-sa, others from Tango project, public domain

Anycast: each
server is

reusing the
same public IP

Load-Balancer

Current status: PM: Deployment behind a Load-Balancer

● Additional paths: how a stateless load-balancer can pick the same server?

⇒ Servers: tell client not to use initial address and announce a new one.

27
Smartphone and WiFi icons by Blurred203 and Antü Plasma under CC-by-sa, others from Tango project, public domain

Anycast: each
server is

reusing the
same public IP

Load-Balancer

Current & Future: PM: Deployment behind a Load-Balancer

● Current:

○ Server side: fully supported ✅
○ Client side: respect protocol ☑

■ Not creating subflows to the initial address ✅
■ But… the path manager will not create additional paths by default ❌

● Future: better support this use-case on the client side

And… MPTCP supported by more CDNs? 🤞
28

Future: Path Manager: More

● In-kernel PM: support less common use-cases, e.g.

○ Re-establishing subflows after network errors

○ Limit to one subflow per network device having multiple IP addresses

○ Force to use specific endpoints when the server announces a new IP

● BPF extension (struct_ops):

○ To adapt to specific use-cases, at a lower cost

○ Including quite a bit of clean-up in the current code!

29

Current & Future: packet scheduler

30

● Current: only one, generic, limited options, “handover” UC as main focus

● Future:

○ API refactoring to handle more cases

○ Support more corner cases, e.g. paths from “too heterogeneous” environments

○ CI: Better tracking performance regressions

○ BPF extension (Slow progress due to ↑ and various reasons)

Development workflow (CI)

31

Workflow

Patches CI Results

● Logs / Artefacts
● Failures / Instabilities
● Publications

● Build + tests● Patches in Git● ML / Patchwork

32

Workflow

Patches CI Results

● Build + tests● Patches in Git● ML / Patchwork

e.g. Patchew

33

● Logs / Artefacts
● Failures / Instabilities
● Publications

Patches ⇒ Git: Patchew can help

https://patchew.org
34

https://patchew.org

Patches ⇒ Git: Patchew can help

https://patchew.org
35

https://patchew.org

Workflow

Patches CI Results

● Build + tests● Patches in Git● ML / Patchwork

e.g. GitHub Actions

36

● Logs / Artefacts
● Failures / Instabilities
● Publications

CI: GitHub Actions can help

37

CI: GitHub Actions can help

38

CI: Requirements

● Results publicly available, configurable by maintainers

● Many steps to build and run the tests:

○ Setup environment: code, tools, etc.

○ Build kernel with right kconfig, and cache

○ Start a VM with KVM support or dedicated HW

○ Catch errors: call trace, warning messages, kmemleak, etc.

39

CI: MPTCP case

● Environment: containers are helpful to get the same everywhere

docker run (...) --privileged mptcp/mptcp-upstream-virtme-docker:latest

● VM: virtme-ng is helpful to build and start a VM

● KVM support: GitHub Actions supports it BUT it is opt-in

● Cache: ccache is helpful

● Catching errors: not difficult but a few cases to deal with, could be shared

https://github.com/multipath-tcp/mptcp-upstream-virtme-docker
40

https://github.com/arighi/virtme-ng
https://github.com/multipath-tcp/mptcp-upstream-virtme-docker

Workflow

Patches CI Results

● Build + tests● Patches in Git● ML / Patchwork

GitHub Pages

41

● Logs / Artefacts
● Failures / Instabilities
● Publications

Results: MPTCP case

● Logs / Artefacts: usually easy

42

Results: MPTCP case

● Parse results: TAP parsers

or converters to JUnit, etc.

43

Results: MPTCP case

● Check regressions: “homemade” solution publishing “flakes” in HTML.

44

Results: MPTCP case

● Publishing results on Patchwork: a bit of plumbing.

45

Results: MPTCP case

● Notifications, e.g. IRC and email:

46

Results: MPTCP case

● Code coverage with GCOV, exported in HTML with LCOV:

(and tracked on Coveralls.io)

47

48

Discussions

● 🌐 mptcp.dev

● ✉ mptcp@lists.linux.dev

● 💬 IRC: #mptcp on Libera.chat

● 🎙 Online Meetings

● 📰 blog.mptcp.dev

● @mptcp@social.kernel.org – @matttbe@fosstodon.org

Questions

https://www.mptcp.dev
mailto:mptcp@lists.linux.dev
https://web.libera.chat/?nick=mptcp-dev-guest?#mptcp
https://github.com/multipath-tcp/mptcp_net-next/wiki/Meetings
https://blog.mptcp.dev/
https://social.kernel.org/mptcp
https://fosstodon.org/@matttbe

